
1 
 

A.Kandiri/Journal of Construction Materials 2 (2021) 2-1 

Predicting the creep coefficient of green concretes containing ground 

granulated blast furnace slag using hybridized multi-objective ANN and 

Salp swarm algorithm 
 

Amirreza Kandiri1*, Fahimeh Fotouhi2 

1 Institute of Construction Materials, Tehran, Iran 

2 Department of computer engineering, Bu-Ali Sina University 

*Corresponding author: E: amir.kandiri@iconsmat.com.au  

 

Abstract 
Using ground granulated blast furnace slag (GGBFS) in concrete mixtures that is known as 

supplementary materials, has both technical and economic advantages. The using of energy and 

greenhouse gas emission can be less if cement replaced by GGBFS in concrete mixtures. It is necessary 

to develop a detailed model in order to evaluate the creep coefficient of the concretes containing 

GGBFS because of important role of its value as a parameter in different design codes. In addition, it 

can save energy, cost, and time in comparison to direct laboratory-based measurements. In this 

research, to develop a model for the estimation of the creep coefficient of concretes containing GGBFS, 

Artificial neural network (ANN) was used. A multi-objective optimization method titled multi-objective 

slap swarm algorithm (MOSSA) was proposed to optimize the error and complexity of the developed 

ANN models. To develop predictive models of creep coefficient. Besides, one of the most used 

classification techniques to solve engineering problems which is The M5P model tree algorithm was 

used in order to develop predictive models of creep coefficient. The efficiency of the proposed model 

developed based on the ANN algorithm was compared with that of the model developed based on the 

M5P model tree technique with the help of several error measures. The findings from this research 

indicate that the M5P model tree and the proposed ANN model can successfully provide predictive 

tools for estimating the creep coefficient of concretes containing GGBFS with 13.36% and 1.79% mean 

absolute percentage error (MAPE), respectively. These values indicate that the proposed model based 

on ANN algorithm has superior efficiency compared to the one developed using M5P model tree. 
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Introduction 
The most used building material is concrete, which is made mainly from ordinary Portland cement, 

aggregates, and water. Studies show producing cement is one of the biggest reasons for greenhouse 

gases. In fact, in producing each ton of cement, almost a ton of CO2 produces [1–5]. This phenomenon 

has become one of the biggest problems in construction. Using supplementary cementitious materials 

(SCMs) as a replacement for cement can reduce the need for cement, and then as a result, the CO2 

emission that is caused by construction is decreased. At first, SCMs were used to decline the use of 

cement, but further studies showed they could improve the durability of concrete and its mechanical 

properties[6]. 

Ground granulated blast furnace slag (GGBFS) is one of these SCMs, which is produced in the process 

of pig iron manufacturing, and it is made of CaO (30-50%), SiO2 (28-38%), Al2O3 (8-24%), MgO (1-18%) 

[7–9]. Because GGBFS changes fresh and hardened concrete properties, there is a need to develop a 

model that specially designed for the purpose of predicting mechanical properties of concrete with 

GGBFS such as its creep coefficient. 

Artificial intelligence (AI) can be used to estimate concrete behavior and its mechanical tools. Artificial 

neural networks (ANN) is an AI tool, which has more usage for that matter. However, it does not predict 

the exact value and it has error. There are some methods, which can reduce this error, and using 

metaheuristic algorithms such as genetic algorithm and particle swarm optimization. The other 

parameter that affects ANN accuracy is its architecture. However, having an accurate network cost a 

lot of time and energy, and sometimes there is no need for this accuracy and tolerance because of its 

cost. Therefore, two parameters are needed to be optimized, accuracy and complexity of the network. 

Hence, a multi-objective algorithm named multi-objective salp swarm algorithm (MOSSA) used to 

develop a series of networks with a variety of accuracy and complexity to let the user choose one of 

them considering their project limits[10].  

There have been some studies that has been used the mentioned methods for predicting concrete 

mechanical properties such as compressive strength (CS), elastic modulus (EM), flexural strength (FS), 

split tensile (ST), and creep coefficient (CC), which are represented in Table 1. 

 

Table 1 A list of previous research on the applications of various AI-based techniques in concrete 
industry. 

Concrete type Property  AI model 

Concretes containing 
GGBFS 

CS ANN with MOSSA, M5P[11] 

Concrete containing waste 
foundry sand 

CS, FS, EM, 
ST 

M5P[12] 

Normal and high-strength 
concretes with fly ash 
and/or GGBFS 

CS M5P [13], Fuzzy logic [14], ANN [6,14–17] 

High-performance concrete 
made with copper slag and 
nanosilica 

CS  Regression analysis and ANN [18] 
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Concretes containing fly ash 
and/or GGBFS 

CS ANN [14] 

Concretes containing 
construction and demolition 
waste 

CS ANN [19] 

Concretes containing fly ash 
and silica fume 

CS ANN [20] 

Self-compacting concrete 
(SCC) 

CS ANN [21,22] 

Silica fume concrete CS ANN [23], Fuzzy logic [23], ANN [24], BBP [25] 

Lightweight concrete CS ANN [26,27] 

Environmentally friendly 
concrete  

CS Hybrid ultrasonic-neural prediction [28], ANN [29], 

Concrete containing 
agricultural and 
construction wastes 

CS ANN [30] 

Normal and high-
performance recycled 
aggregate concrete 

CS, EM, FS, 
ST 

multiple nonlinear regression and ANN [31] 

Recycled aggregate 
concrete  

EM 
M5P [32], genetic programming, ABC programming, 
and BBP [33], ANN, fuzzy TSK, RBF network, and SVR 
[34] 

Steel fiber-reinforced 
concrete 

ST ANN, SVR, and M5P [35] 

SCC EM BBP and ABCP [36] 

Concretes containing waste 
foundry sand 

CS, EM, FS, 
ST 

M5P [37] 

 

 

Data collection 
To establish the models for the forecast of the creep coefficient, in this research, an exhaustive 

database counting 120 particular experiential records of cements made with GGBFS was gathered from 

the literature [38]. In all the specimens, the form of portland cement and curing conditions were kept 

unchanged. The single output parameter in this study was the cylinder (150 millimeters by 600 

millimeters). creep coefficient (CC) of concrete. Seven potentially impressive factors were considered 

as input variables in three main categories, namely the amount of constituents in the concrete mix, 

cement type (CT) and the testing age (TA) of the concrete. The quantities of OPC, GGBFS, water (W), 

fine aggregate (FA) and coarse aggregate (CA) form the concrete components. Conversion factors were 

used to achieve the target elastic modulus for the experimental records for different types of specimens 

[52]. Fig.1 shows the histograms of the input and the output variables. In addition, Table 2 provides the 

descriptive statistics for the obtained database. 
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Figure 1 The histograms of input and the output variables. 
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Table 2 Statistical values of input and output variables. 

Statistical values 
C 

(Kg/m3) 
W 

(Kg/m3) 
GGBFS 
(Kg/m3) 

CA 
(Kg/m3) 

FA 
(Kg/m3) 

TA 
(Days) 

CC 
(MPa) 

Minimum 128.0 175.0 0.0 1107.0 665.0 1.0 0.1 

Maximum 400.0 180.0 240.0 1145.0 688.0 150.0 3.6 

Mean 249.7 177.0 107.0 1128.0 677.7 49.0 1.4 

Standard deviation 83.4 2.2 80.7 15.8 9.5 50.6 0.8 

Skewness 0.2 0.6 0.1 -0.4 -0.4 0.9 0.5 

Kurtosis -1.1 -1.5 -1.3 -1.5 -1.5 -0.7 -0.5 

 

 

 

Methodology 
Trial-and-error is the most utilized approach to evaluate the architecture of an ANN. The development 

of a model that can produce ANN models with various complexities and accuracies is seriously 

necessary because if there is a difference in the number of hidden layers and their neurons, the speed 

and precision of an ANN can difference. In this research, an ANN to establish a multi-objective artificial 

neural network (MOANN) [20] was combined with a multi-objective optimization algorithm named salp 

swarm algorithm (SSA) [53]. Various MOANN stages are shown in Fig. 2. Then the outputs of the M5P 

tree [54,55] are compared to the MOANN outputs to measure the accuracy of the proposed model. 
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ANN

MSSA

Load database

Define the problem dimension 

(number of inputs and outputs)

Set upper and lower boundaries, number of search 

agents, maximum number of iterations, repository size

Create the search agent  position randomly

Compare the fitness of all search agents

Decoding search agent to determine the active 

hidden layers and related neurons

Partition database into k folds 

Choose the training, validating, and testing data 

for all folds

Run the ANN model for different folds

Calculate the error and complexity of network 

Find the non-dominated solutions

Update the repository and the search agents

Is it the last iteration?

Return the repository

NO

Is it the last fold?

Calculate the average error of network

Is it the last search 

agent?

Calling ANN to compute the fitness of search agent

Start

Yes

NO

Yes

Finish

Yes

NO

Normalize data

 

Figure 2 Different stages of the proposed MOANN 

 

 

 

 

 

Results and discussion 
Adjustment parameters including the maximum number of hidden layers, the maximum number of 

neurons in each hidden layer, the activation function type in hidden and output layers, the ANN training 

method, the total runs number, the number of maximum iteration, the number of salps, and the size 

of the repository should be calculated before running the proposed model. With the help of trial-and-

error technique, all these parameters were acquired, and they can be seen in Table 3. 
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Table 3 Adjustment parameters of the proposed model. 

Parameters Values 

Maximum number of hidden layers 3 

Maximum number of neurons in each hidden layer 16 

Hidden layers’ activation function Hyperbolic tangent sigmoid 

Output layer’s activation function Linear 

ANN training algorithm Levenberg-Marquardt 

Number of total runs 10 

Maximum iteration number 100 

Salp number 30 

Repository size 50 

 

 

After 10 times of running the model, the best Pareto front which is provided in Fig. 3 was achieved. The 

horizontal and vertical axes in Fig. 3 provide complexity and OBJ respectively which are two objective 

functions. The number of 150,000 ANN models with various architectures was developed to achieve 

the Pareto front, and ultimately 12 non-dominated salps depicting the optimum ANN models were 

reached. It can be understood from Fig. 3 that when the OBJ value goes down, the complexity grows, 

and it means that more accurate creep coefficient of concrete containing GGBFS can be estimated by 

the ANN models with more complicated architectures. 
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Figure 3 Pareto front of the proposed model. 

Statistical metrics other than those listed in the previous section were used to compare the 

performance of the developed models with various architectures. These statistical metrics were scatter 

index (SI), mean bias error (MBE), and mean absolute percentage error (MAPE), which are defined as 

follows: 

SI = RMSE/E̅            (13) 

MBE = 
1

P
∑ (Mp − Ep)

P
i=1          (14) 

MAPE = 
100

P
 ∑

MP−EP

MP

P
i=1                                                                                                                                 (15) 

Where E̅ is the average value of the outcomes of the experiment and other factors are as described 

previously. An ANN model has an “excellent performance” if SI < 0.1, a “good performance” if 0.1 < SI 

< 0.2, a “fair performance” if 0.2 < SI < 0.3, or a “poor performance” if SI > 0.3 [56]. For all the data, 

Table 4 presents the architectures, statistical indicators, and complexities of the optimal ANN models. 

 

Table 4 Non-dominated salps information for all data. 

ANN Architecture 
OBJ 
(MPa) 

RMSE 
(MPa) 

MAPE 
(%) 

MAE 
(MPa) 

R SI 
MBE 
(MPa) 

Complexity 

ANN1 6-1 0.434 0.304 38.387 0.238 0.926 0.220 -0.013 7 
ANN2 6-1-1 0.380 0.369 29.089 0.230 0.889 0.266 -0.020 9 
ANN3 6-2-1 0.125 0.146 12.458 0.064 0.983 0.105 0.002 17 
ANN4 6-3-1 0.117 0.149 11.301 0.044 0.983 0.108 -0.016 25 
ANN5 6-4-1 0.093 0.110 9.296 0.057 0.991 0.079 -0.001 33 
ANN6 6-5-1 0.084 0.062 6.245 0.045 0.997 0.044 0.003 41 
ANN7 6-3-5-1 0.084 0.055 4.789 0.041 0.998 0.040 -0.003 47 
ANN8 6-3-6-5-1 0.076 0.049 4.829 0.037 0.998 0.035 0.001 86 
ANN9 6-11-5-1 0.076 0.038 3.119 0.024 0.999 0.028 -0.001 143 
ANN10 6-5-9-7-1 0.070 0.044 4.390 0.031 0.998 0.032 -0.007 167 
ANN11 6-5-10-7-1 0.068 0.039 3.491 0.025 0.999 0.028 0.001 180 
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As it shown in Fig. 3, two networks (ANN3 and ANN7) were chosen for further investigation because of 

the slight decline in the next error of the next ANNs in contrast to the huge growth in their number of 

links. Fig. 4 shows the structure of ANN3, which has two neuron in its only hidden layer and ANN7, 

which has three and five neuron in the first and the second hidden layer, respectively. ANN1 is the 

simplest network with seven links in contrast to ANN11, which has 180 links and is the most complex 

one. ANN3 and ANN7 have 17 and 47 links, respectively. The OBJ of ANN1 is the highest by the value of 

0.434 MPa while ANN3 and ANN7 have OBJ value of 0.125 and 0.084, respectively, and ANN1 has the 

OBJ value of 0.068 MPa, which is the lowest. The RMSE of ANN1 is equal to 0.304, which is the highest 

value among the networks and the same value of ANN3, ANN7, and ANN11 are 52%, 82%, and 87% 

lower than that of ANN1. According to MAPE, ANN11 is the most accurate network with the MAPE value 

of 3.491% and this value of ANN7, ANN3, and ANN1 are around 1.3, 3.5, and 11 times more than that 

of ANN11. ANN11 has the MAE value of 0.025, and ANN7, ANN3, and ANN1 are less accurate by 0.016, 

0.039, and 0.213 MPa. R-value indicates how much experimental and predicted values are close and it 

ranges between zero and one. Moreover, the higher this value gets, the closer the predicted and 

experimental values are, and 10 networks out of 11 have R-value more than 0.9. Based of SI indicator 

ANN1 has a fair performance and ANN3 has a good one while ANN7 and ANN11 have an excellent 

performance. According to MBE, ANN1 and ANN7 under estimate the creep coefficient of the concrete 

containing GGBFS while ANN3 and ANN11 over estimate this value.  The weights and biases of the ANN-

3 and ANN-7 models are given in the appendix. 

 

Figure 4 Architectures of (A) ANN-3 and (B) ANN-7. 

To have a good comparison, the results of ANN-7 and ANN-7 were compared with the results of M5P 

model tree. The obtained tree model is shown in Fig. 5 and the predicted coefficients for the M5P model 

tree are given in Table 5. 
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Figure 5 Regression M5P model tree for CC of concrete containing GGBFS. 

 

Table 5 Predicted coefficients for the M5P model tree. 

 

 

ANN7 has the RMSE, MAE, MAPE, and OBJ value of 0.055, 0.041, 4.789, and 0.084, respectively, which 

are the lowest values among the three models. These values of ANN3 are more by 165%, 56%, 160%, 

and 49%, respectively in comparison with ANN7, which make it the second accurate model. In contrast 

to ANN7, M5P tree has the highest value of the same parameter. These values for M5P tree are 0.184, 

0.110, 17.869, and 0.233, respectively. According to R-value, ANN7 has the best match between 

predicted and experimental values and ANN3 and M5P tree are the second and the third, respectively. 

SI indicators represent ANN7 has an excellent performance while two other models have good 

performances. Furthermore, MBE indicates ANN7, in contrast to other models, underestimates the 

creep coefficient of concrete containing GGBFS. 

Table 6 The statistical indicators of ANN-7, ANN-3, and M5P tree models. 

Models RMSE 
(MPa) 

MAE 
(MPa) 

MAPE 
(%) 

R SI MBE 
(MPa) 

OBJ 
(MPa) 

ANN3 0.146 0.064 12.458 0.98 0.105 0.002 0.125 
ANN7 0.055 0.041 4.789 1.00 0.040 -0.003 0.084 
M5P 0.184 0.110 17.869 0.97 0.134 0.014 0.233 

 

 

Age (days)

CC1

Age (days)

CC2

CC3

<=42

<=10.5 >10.5

>42

Linear models 
Coefficients 

OPC W GGBFS CA FA TA Bias 

CC1 -0.0055 0 -0.0039 -0.0057 0 0.0527 8.5695 
CC2 -0.0069 0 -0.0046 -0.0082 0 0.0262 12.0212 
CC3 -0.0112 -0.0274 -0.0069 -0.0133 0 0.0102 24.4885 
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The predicted CCs of the three developed models are depicted versus experimental results in the Fig. 

6. As it can be seen, in ANN7 the dispersion of observations around the baseline is more than ANN3 

and M5P, which represents its ability in the learning and generalization phases. 

 

Figure 6 Predicted results vs experimental results of the developed models for training and testing 
datasets. 

 

To compare the statistical indicators simultaneously, Taylor diagram was used to show the performance 

of various developed models in terms of RMSE, Correlation coefficient, and standard deviation. There 

is a baseline in this diagram where a more efficient model will have the closest distance to this line. To 

compare the performance of the ANN3, ANN7, and M5P models, Fig. 7 demonstrates the Taylor 

diagram of these three developed models. As can be seen, the closest model to the baseline is related 



12 
 

A.Kandiri/Journal of Construction Materials 2 (2021) 2-1 

to the ANN-7 model, and the second closest one is the ANN-3 model while the M5P model tree is the 

third one. 

 

Figure 7 Taylor diagram of three developed models. 

 

All developed models are mathematical functions, which map the constituents of concrete with GGBFS 

to its creep coefficient. Civil engineers can easily use the decision tree structure of Fig. 5 and the weights 

and biases of the proposed models in the Appendix to estimate the CC of concrete with GGBFS. They 

can assume some values for concrete constituents and compute the CC. With trial and error and some 

changes in the concrete constituents, they can reach to the optimized mix design of concrete with 

GGBFS. Also, reducing environmental impact of concrete had been approached by many studies by 

utilizing the use of high quality recycled aggregate as well which can be recommended for the future 

studies [39-41].  

 

 

 

Conclusions  
An ANN model for the prediction of the creep coefficient of concretes containing GGBFS, which 

accounts for both accuracy and simplicity, can be useful to save in energy, time, and cost. In this 

research, the multi-objective artificial neural network (MOANN) was proposed in which the 
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architecture of ANN was optimized by the multi-objective salp swarm optimization algorithm and 

then served in predicting the concrete CC with GGBFS. The following findings were drawn in this 

study: 

• The total Pareto front includes 11 ANNs a variety of accuracy and complexity, which let the 

user to choose a network according to their requirements. 

• Ten ANNs out of Pareto front’s 11 non-dominated ANNs have the R-value more than 0.9, 

which deputes the great correlation between the experimental and predicted results. 

• The ANN model without any hidden layer is the simplest and the least accurate one and the 

ANN11 model with 6-5-10-7-1 architecture and 180 links is the most complicated and 

accurate one. 

• Comparing the performance of the two chosen ANN models with the M5P model tree 

indicates that the performance of ANN-\3 is better than M5P tree performance almost in all 

areas.  
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Appendix  
Weights and biases of the ANN7 model 

Input layer weigths matrix

= [
−2.149 −0.431 −3.510 3.593 −3.294 3.419 −0.461
−0.259 0.126 −0.327 1.528 1.143 −0.597 −0.204
−0.197 −0.091 −0.006 −0.015 −0.312 0.147 −12.260

] 

Input layer bias vector = [2.411 −1.390 −14.056] 

Output layer weights vector = [0.396 −0.986 −13.700] 

Output layer bias = [−14.303] 

Weights and biases of the ANN16 model  

Input layer weigths matrix

=

[
 
 
 
 

0.120 0.822 −0.165 −0.283 −0.124 0.008 −6.184
0.106 1.673 −0.627 2.444 1.281 2.461 −0.065
0.228 1.176 −0.247 −0.361 −0.160 0.169 0.239

−0.104 −0.706 0.251 −0.784 −2.916 4.898 0.026
0.423 −1.013 0.787 −2.137 −0.478 −1.844 0.064 ]

 
 
 
 

 

Input layer bias vector = [−5.745 0.631 0.464 2.713 −0.048] 

Hidden layer weights matrix =  [

0.405 −1.789 −0.307 −0.596 −1.773
−0.266 −1.676 0.236 −5.974 −1.106
−9.595 −0.490 7.149 −0.850 0.058
−1.273 0.671 1.821 −0.158 1.164

] 

Hidden layer bias vector = [0.930 −5.249 3.704 0.272] 

Output layer weights vector = [−1.302 −1.522 2.896 0.297] 

Output layer bias vector = [−3.857] 

 

 


