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Abstract 
Ground granulated blast furnave slag (GGBFS) once used in concrete derives both technical and 

economic advantages. Energy consumption and greenhouse gas emissions can be reduced significantly 

if cement is replaced by GGBFS in concrete mixtures. However, it is necessary to develop a detailed 

model in order to evaluate the elastic modulus of the concretes containing GGBFS because of important 

role of its value as a parameter in different design codes. In addition, it can save energy, cost, and time 

in comparison to direct laboratory-based measurements. In this research, to develop a model for the 

estimation of the elastic modulus of concretes containing GGBFS, Artificial neural network (ANN) was 

used. A multi-objective optimization method titled multi-objective slap swarm algorithm (MOSSA) was 

proposed to optimize the error and complexity of the developed ANN models. To develop predictive 

models of elastic modulus. Besides, one of the most used classification techniques to solve engineering 

problems that is The M5P model tree algorithm was used in order to develop predictive models of 

elastic modulus. The efficiency of the proposed model developed based on the ANN algorithm was 

compared with that of the model developed based on the M5P model tree technique with the help of 

several error measures. The result of this research is that it is possible using the M5P model tree and 

the proposed ANN model for the purpose of provide predictive tools for estimating the elastic modulus 

of concretes containing GGBFS and these would have 13.36% and 1.79% mean absolute percentage 

error (MAPE), respectively. It is understood from these values that the proposed model based on ANN 

algorithm is much more effective than the one developed using M5P model tree. 
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Introduction 
Concrete is the most popular material in construction that is using to build bridges, ports, buildings to 

name a few. The most important ingredients of concrete are cement (C), water (W), coarse aggregate 

(CA), and fin aggregate (FA). However, around a ton of carbon dioxide is emitted during the producing 

a ton of cement. In fact, cement production has a major contribution in global greenhouse gas emission 

[1–5].  

One of the best solution for this problem is replacing cement with supplementary cementitious 

materials (SCMs) such as fly ash, silica fume, and ground granulated blast furnace slag, to name a few. 

This solution has been being used significantly in the past two decades. Using SCMs not only does 

reduce the greenhouse gas emission, but also improves mechanical properties and durability of 

concrete [6]. 

GGBFS is by product of manufacturing pig iron containing calcium oxide (30-50%), silicon dioxide (28-

38%), aluminum oxide (8-24%), and magnesium oxide (1-18%), and it is made by cooling the molten 

slag rapidly. This process make GGBFS fine, granular, and almost glassy with unstable hydraulic 

properties [7–9]. GGBFS and other SCMs affect concrete hardening phase and its strength 

development. Therefore, the predictive models, which were developed to estimate elastic modulus of 

ordinary concrete, are not so useful for type of concrete. Hence, there is a need for developing a 

especial model to estimate elastic modulus of concrete containing GGBFS. 

Recently artificial intelligence tools (AI) especially artificial neural networks (ANN) have been used to 

predict mechanical properties and behavior of different concretes. Moreover, metaheuristic algorithms 

have been used to reduce ANNs’ errors. The models, which have been developed recently, have a 

better performance than old one like genetic algorithm or particle swarm optimization algorithm. For 

instance, in a study multi-objective salp swarm algorithm hybridized with ANN to predict compressive 

strength of concrete with GGBFS [10]. In another study multi-objective grey wolf optimization algorithm 

and an ANN used to predict compressive strength of concrete containing silica fume [11]. Table. 1 

represents recent works that used ANNs to predict mechanical properties of concrete such as 

compressive strength (CS), elastic modulus (EM), flexural strength (FS), split tensile (ST), and creep 

coefficient (CC). 

Due to the effect of ANN’s architecture on its performance, it is necessary to obtain the ANN with the 

optimum architecture. On the other hand, having an accurate model comes with unwanted cost of 

time. Therefore, in this research a multi-objective optimization algorithm named multi-objective salp 

swarm algorithm (MOSSA) is used to optimize accuracy and complexity of the ANN. This approach 

makes it possible to obtain a network with essential complexity and accuracy. Furthermore, the results 

of the proposed model will be compare with a popular model named M5P tree to test its performance. 
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Table 1 A list of previous research on the applications of various AI-based techniques in concrete industry. 

 

 

 

Concrete type Property  AI model 

Concretes containing GGBFS CS ANN, M5P[10] 

Concrete containing waste foundry sand CS, FS, EM, ST M5P[12] 

Normal and high-strength concretes with 
fly ash and/or GGBFS 

CS M5P [13], Fuzzy logic [14], ANN [6,14–17] 

High-performance concrete made with 
copper slag and nanosilica 

CS  Regression analysis and ANN [18] 

Concretes containing fly ash and/or 
GGBFS 

CS ANN [14] 

Concretes containing construction and 
demolition waste 

CS ANN [19] 

Concretes containing fly ash and silica 
fume 

CS ANN [20] 

Self-compacting concrete (SCC) CS ANN [21,22] 

Silica fume concrete CS ANN [23], Fuzzy logic [23], hybrid ANN with multi-objective grey wolves 
[11], biogeography-based programming (BBP) [24] 

Lightweight concrete CS ANN [25,26] 

Environmentally friendly concrete  CS Hybrid ultrasonic-neural prediction [27], ANN [28], 

Concrete containing agricultural and 
construction wastes 

CS ANN [29] 

Normal and high-performance recycled 
aggregate concrete 

CS, EM, FS, ST multiple nonlinear regression and ANN [30] 

Recycled aggregate concrete  EM M5P [31], genetic programming, artificial bee colony programming, and 
BBP [32], ANN, fuzzy TSK, and radial basis function neural network, and 
support vector regression [33] 

Steel fiber-reinforced concrete ST ANN, SVR, and M5P [34] 

SCC EM BBP and ABCP [35] 

Concretes containing waste foundry sand CS, EM, FS, ST M5P [36] 
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Data collection 
In this research, a comprehensive database consist of 131 different experimental records of concretes 

that made with GGBFS was collected from the literature in order to develop the models for the 

prediction of the elastic modulus [37–43]. In all mixes, the curing conditions were not changed. The 

only parameter which was used as output in this study is the cylinder (150 millimeters by 300 

millimeters) elastic modulus (EM) of concrete. For experimental records with other types of samples, 

for the purpose of obtaining the target elastic modulus values, conversion factors were used[44]. Six 

potentially impressive factors were considered as input variables. In fact, they were in three main 

categories that are the amounts of constituents in the concrete mix and the testing age (TA) of 

concrete. Concrete compositions included amounts of cement, GGBFS, water (W), fine aggregate (FA) 

and coarse aggregate (CA). Fig.1 represented the input and the output variables’ histograms. Moreover, 

statistical values of input and output variables are given in Table 2. 

 

Table 2 Statistical values of input and output variables. 

Statistical values 
C 
(Kg/m3) 

W 
(Kg/m3) 

GGBFS 
(Kg/m3) 

CA 
(Kg/m3) 

FA 
(Kg/m3) 

TA 
(Days) 

EM 
(MPa) 

Minimum 33.0 109.0 0.0 1040.0 482.0 3.0 8.3 

Maximum 541.0 203.0 315.0 1242.0 839.0 180.0 50.3 

Mean  254.2 169.5 121.4 1130.8 674.0 56.6 25.1 

Standard deviation 107.3 23.1 92.0 39.6 61.2 56.9 10.7 

Skewness  0.3 -1.5 0.1 0.5 -1.4 1.1 0.6 

Kurtosis -0.3 1.3 -1.1 1.8 4.4 -0.1 -0.4 
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Figure 1 The histograms of input and the output variables. 

 

Methodology 
To determine the architecture of an ANN, the most used method is trial-and-error. There will be a 

change in speed and accuracy of an ANN if number of hidden layers and their neurons is changed. 

Therefore, for generating ANN models that have different complexities and accuracies, developing a 

model with this ability is seriously needed. In this study, to develop a multi-objective artificial neural 

network (MOANN) [10], salp swarm algorithm that is a multi-objective optimization algorithm is 

combined with an ANN[45]. In Fig. 2 different stages of proposed MOANN are illustrated. Then the 
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outputs of an M5P tree [46,47] and MOANN were compared to test performance of the proposed 

model. 

ANN

MSSA

Load database

Define the problem dimension 

(number of inputs and outputs)

Set upper and lower boundaries, number of search 

agents, maximum number of iterations, repository size

Create the search agent  position randomly

Compare the fitness of all search agents

Decoding search agent to determine the active 

hidden layers and related neurons

Partition database into k folds 

Choose the training, validating, and testing data 

for all folds

Run the ANN model for different folds

Calculate the error and complexity of network 

Find the non-dominated solutions

Update the repository and the search agents

Is it the last iteration?

Return the repository

NO

Is it the last fold?

Calculate the average error of network

Is it the last search 

agent?

Calling ANN to compute the fitness of search agent

Start

Yes

NO

Yes

Finish

Yes

NO

Normalize data

 

Figure 2 Different stages of the proposed MOANN 

 

 

 

Results and discussion 
Adjustment parameters of the proposed model should be determined before its running and they 

consist of the maximum number of hidden layers, the maximum number of neurons in each hidden 

layer, the activation function type in hidden and output layers, the ANN training method, the total runs 

number, the number of maximum iteration, the number of salps, and the size of the repository. With 

the help of the trial-and-error technique, all these adjustment parameters were achieved and they are 

represented in Table 3. 
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Table 3 Adjustment parameters of the proposed model. 

Parameters Values 

Maximum number of hidden layers 3 

Maximum number of neurons in each hidden layer 16 

Hidden layers’ activation function Hyperbolic tangent sigmoid 

Output layer’s activation function Linear 

ANN training algorithm Levenberg-Marquardt 

Number of total runs 10 

Maximum iteration number  100 

Salp number 30 

Repository size 50 

 

 

After 10 times of running the model, the best Pareto front was discovered which is consist of OBJ and 

complexity that are two objective functions and showed in Fig. 3 in the vertical and horizontal axes, 

respectively. 150,000 ANN models that did not have the same architecture were developed to reach 

the Pareto front, and in the long run, the optimal ANN models were represented by 12 non-dominated 

salps. As can be seen in Fig. 3 with decreasing the value of OBJ, the complexity enhances and it can be 

understood that the more accurate prediction of the elastic modulus of concrete containing GGBFS is 

possible with more complicated architecture ANN models. 

 

Figure 3 Pareto front of the proposed model. 
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More statistical indicators other than those mentioned in the previous section were used for the 

purpose of comparing the performances of the developed models with different architectures. These 

statistical indicators were scatter index (SI), mean bias error (MBE), and mean absolute percentage 

error (MAPE), which are formulated as follows: 

SI = RMSE/E̅            (13) 

MBE = 
1

P
∑ (Mp − Ep)

P
i=1          (14) 

MAPE = 
100

P
 ∑

MP−EP

MP

P
i=1                                                                                                                                 (15) 

All parameters are as defined previously, but E̅ is the average value of the experimental results. If SI < 

0.1, an ANN model has an “excellent performance”, if 0.1 < SI <0.2, a “good performance”, if 0.2 < SI < 

0.3, a “fair performance”, or if SI > 0.3, a “poor performance”[48]. The architectures, statistical 

indicators, and complexities of the optimal ANN models for all data are given in Table 4. 

 

Table 4  Non-dominated salps information for all data. 

ANN Architecture 
OBJ 
(MPa) 

RMSE 
(MPa) 

MAPE 
(%) 

MAE 
(MPa) 

R SI 
MBE 
(MPa) 

Complexity 

ANN-1 6-1 7.90 5.20 20.71 3.90 0.77 0.21 0.31 7 
ANN-2 6-1-1 5.25 3.62 14.76 2.81 0.88 0.14 0.35 9 
ANN-3 6-1-1-1 5.10 3.61 14.62 2.76 0.89 0.14 0.05 11 
ANN-4 6-1-2-1 4.85 3.52 14.64 2.72 0.89 0.14 0.31 14 
ANN-5 6-2-1 3.33 2.72 8.33 1.69 0.94 0.11 0.12 17 
ANN-6 6-3-1 2.65 2.34 7.32 1.41 0.95 0.09 0.03 25 
ANN-7 6-4-1 2.35 2.06 6.53 1.20 0.96 0.08 -0.10 33 
ANN-8 6-5-1 2.25 1.88 6.70 1.28 0.97 0.07 -0.04 41 
ANN-9 6-6-1 1.66 1.15 3.80 0.79 0.99 0.05 0.00 49 
ANN-10 6-7-1 1.34 0.73 2.34 0.50 1.00 0.03 -0.01 57 
ANN-11 6-5-5-1 1.05 0.77 1.79 0.39 0.99 0.03 -0.02 71 
ANN-12 6-8-6-1 0.52 0.28 0.83 0.17 1.00 0.01 0.00 117 

 

The fact that how much the forecasted values are matched to the experimental ones is represented by 

the Pearson correlation coefficient (R). In addition, it demonstrates how much R values of 8 networks 

out of 12 optimal networks are more than 0.90. 

ANN-12 with OBJ value of 0.52 MPa, RMSE of 0.28 MPa, MAPE of 0.83 percent, MAE of 0.17 MPa, R-

value of 1, SI value of 0.01, MBE of 0.00 MPa, and complexity of 117, which makes it the most complex 

one with 6-8-6-1 architecture, is the most accurate network. Unlike ANN-12, ANN1 is the simplest since 

it has complexity value of seven, OBJ value of 7.90 MPa, RMSE of 5.20 MPa, MAPE of 20.71, MAE of 3.9 

MPa, R-value of 0.77, SI value of 0.21, and MBE of 0.31 MPa, which causes it to be the least accurate 

one that has no hidden layer. For different structure the MBE values calculated and they indicate that 

elastic modulus of concrete containing GGBFS are overestimated by eight networks while it is 

underestimated by four ANN models. It can be understood from the SI that performance of seven 

networks are excellent, four networks are good, just one is fair, and none of them is poor. The two ANN 

models that are shown in Fig.3 were selected for more research since unlike their complexity rise 

significantly, they have minimal reduction in the next networks’ error. Fig. 4 illustrated these two 

networks (i.e., ANN-5 model that has two neurons in its only hidden layer and ANN-11 model with 6-5-
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5-1 architecture). The OBJ value of the ANN-11 model in comparison with the ANN-5 model, is about 

68% less, but it has a higher R-value by 5 points. However, ANN-11 model has 71 links, which is more 

than four times the ANN-5 links. The ANN-11, ANN-5, and ANN-1 models’ OBJ values are higher than 

the ANN-12 model; In fact, they are higher by 101%, 540%, and 1419%, respectively. Moreover, the 

ANN-1 model’s RMSE is 91% more than ANN-5 model, while the value of this parameter in the ANN-11 

is higher than that of the ANN-12 model by almost 175%. On the other hand, according to SI indicator, 

the ANN-12 and ANN-11 models have excellent performance while the ANN-5 has good performance 

and ANN-1 has fair performance, respectively. The fact that in contrast to the ANN-11 model, the ANN-

1 and ANN-5 models overestimate, can be understood from MBE. Additionally, the value of MBE in the 

ANN-19 that is zero causes an accurate estimation for this model. The weights and biases of the ANN-

11 and ANN-5 models are given in the appendix. 

 

Figure 4 Architectures of (A) ANN-5 and (B) ANN-11. 

 

In order to have a better comparison, comparing the results of ANN-16 and ANN-7 with the results of 

M5P model tree was done. Table 5 shows the coefficients that are predicted for the M5P model tree 

and Fig. 5 illustrates the obtained tree model. 
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Figure 5  Regression M5P model tree for EM of concrete containing GGBFS. 
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Table 5 Predicted coefficients for the M5P model tree. 

 

 

The statistical indicators of ANN-11, ANN-5, and M5P tree models are given in Table 6. It is observed 

that the value of RMSE indicator of the ANN-5 is 253% more than that of the ANN-11 model, and its 

value of the M5P model is 4302% more. In addition, the MAE values of ANN-5 and M5P models are 

333% and 548% higher than that of the ANN-11 model, respectively. ANN-11 model has the best 

performance due to its R indicator value that is 0.99. This indicator value in the M5P and ANN-5 models 

is 0.95 and 0.94, respectively. According to SI indicator of ANN-11 model, it has an excellent 

performance with value of 0.03 while its value of ANN-5 and M5P models has a slight difference and 

cause a good performance. In addition, the M5P model has the highest value of OBJ, so it is 294% more 

than ANN-11. The ANN-5 model’s OBJ value also is 217% higher than that of the ANN-11 model. It can 

be observed that the elastic modulus of concrete is overestimated by ANN-5 model due to MBE while 

this indicator shows that ANN-11 and M5P models underestimate the elastic modulus of concrete. 

 

Table 6 The statistical indicators of ANN-11, ANN-5, and M5P tree models. 

Models 
RMSE 
(MPa) 

MAE 
(MPa) 

MAPE 
(%) 

R SI 
MBE 
(MPa) 

OBJ 
(MPa) 

ANN-11 0.77 0.39 1.79 0.99 0.03 -0.02 1.05 
ANN-5 2.72 1.69 8.33 0.94 0.11 0.12 3.33 
M5P 3.39 2.53 13.36 0.95 0.14 -21 4.14 

 

  

Linear models 
Coefficients 

OPC W GGBFS CA FA TA Bias 

EM 1 0.0228 -0.0961 0.0266 0.0166 -0.0222 0.1029 40.1120 
EM 2 0.0358 -0.1591 0.0266 0.0166 -0.0003 0.0186 22.3479 
EM 3 0.0358 -0.1591 0.0266 0.0166 -0.0003 0.1773 22.8905 
EM 4 0.0190 -0.0413 0.0039 -0.0260 0.0060 0.4458 40.7597 
EM 5 0.0037 -0.0413 0.0016 -0.0174 0.0060 0.4552 36.0793 
EM 6 0.0137 -0.0413 0.0016 -0.0174 0.0060 0.4842 33.4584 
EM 7 0.0125 -0.0413 0.0016 -0.0174 0.0060 0.4676 33.5757 
EM 8 0.0317 0.0001 0.0094 0.0073 0.0060 0.0159 0.7881 
EM 9 0.0224 0.0001 0.0094 0.0073 0.0060 0.0085 2.7532 
EM 10 0.0263 0.0919 0.0094 0.0073 0.0060 0.0188 -14.6676 
EM 11 0.0214 -0.5182 0.0094 0.0073 0.0060 0.0109 102.3652 
EM 12 0.0234 -0.4726 0.0094 0.0073 0.0060 0.0109 91.3902 
EM 13 0.02 -0.1094 0.0094 0.0073 0.0060 0.0207 18.9997 
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Predicted results against experimental results of the developed models for training and testing datasets 

is represented in Fig. 6. In fact, each sub-figure shows the linear regression model. It can be indicated 

from graphs that ANN-11 is more capable in learning and generalization phases since predicted results 

of ANN-11 are similar to experimental results more than that of other two models. 

 

 

Figure 6  Predicted results vs experimental results of the developed models for training and testing 
datasets. 

 

To compare the performance of different developed models, in terms of standard deviation, 

Correlation coefficient, and RMSE, Taylor diagram was used. The efficiency of models can be measured 
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Taylor diagram is demonstrated in Fig. 7 to compare the performance of the M5P and selected ANNs. 

As it can be seen, ANN-11 is the closest model to the baseline followed by ANN-5 while the farthest 

model is M5P tree. 

 

 

Figure 7 Taylor diagram of three developed models. 

 

Using weights and biases of the selected models on the Appendix and the decision tree represented 

in the Fig. 5 civil engineers can estimate the elastic modulus of a concrete mixture containing GGBFS 

and optimized design of concrete is reachable by trial and error. Also, reducing environmental impact 

of concrete had been approached by many studies by utilizing the use of high quality recycled 

aggregate as well which can be recommended for the future studies [49-51]. 

 

 

 

Conclusions  
To predict the elastic modulus of concrete containing GGBFS, an ANN model was developed, which 

can save in cost, time, and energy and accounts for both simplicity and accuracy. In this study, in the 

proposed model (MOANN) the architecture of ANN was optimized using MOSSA. The following 

findings were drawn in this study: 
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• The obtained Pareto front includes 12 ANN models with various structures and precisions, 

which let the user choose among the 12 models based on the required accuracy and 

simplicity.  

• Pearson correlation coefficient of eight of 12 non-dominated ANN models on the Pareto front 

was more than 0.90, which shows the great correlation between the predicted and 

experimental results. 

• Even the accuracy of the simple developed ANN model with just 17 links was acceptable with 

the root mean squared error of 2.72 MPa and the mean absolute percentage error of 8.33%.  

• The ANN-12 model with 6-8-6-1 architecture and 117 links is the most complicated and 

accurate one and the ANN model without any hidden layer is the simplest and the least 

accurate one. 

• Comparing the performance of the two chosen ANN models with the M5P model tree 

indicates that the performance of even ANN-5 is better than M5P tree performance almost in 

all areas, and ANN-11 has a much better performance in comparison with M5P. 
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Appendix  
Weights and biases of the ANN5 model 

Input layer weigths matrix = [
11.5964 −0.9782 6.9339 −1.072 25.4101 0.0797
2.7547 10.0614 1.9641 2.5931 3.7090 −4.2398

] 

Input layer bias vector = [1.3148 −7.6512] 

 

Output layer weights vector = [0.6966 −0.3410] 

Output layer bias = [−0.3786] 

Weights and biases of the ANN11 model  

Input layer weigths matrix =

[
 
 
 
 
−1.3111 2.4062 −0.8953 0.8341 −3.6961 4.1058
0.0471 −2.0815 0.1184 −0.9495 1.0568 −3.8008

−0.0467 −3.5863 1.0542 −1.7990 −0.4921 −0.2038
−0.7335 −3.0438 −4.6157 −0.6216 4.8839 −0.1971
−2.4741 0.3669 −1.4637 −1.3632 0.1869 −0.0293]

 
 
 
 

 

Input layer bias vector = [3.08053211201657 −3.3807 1.3834 0.3417 −2.1763] 

Hidden layer weights matrix =  

[
 
 
 
 
−1.0811 0.6336 −0.9583 5.4708 1.1786
0.9378 1.9049 2.3174 −2.4114 −0.3490

−0.9738 −1.2339 0.8933 0.4735 −0.7636
1.0416 1.8000 0.6296 0.2780 0.7683
0.9383 1.2837 −0.6819 1.16648 2.0636 ]

 
 
 
 

 

Hidden layer bias vector = [1.1063 0.9172 −0.3808 1.7325 −0.8267] 

Output layer weights vector = [0.9560 1.0102 1.8220 −3.0072 −0.7580] 

Output layer bias vector = [−0.6707] 

 


