

CALCULATION METHODS – CONVEYOR BELTS

Contents

- 2 Introduction
- 3 Terminology
- 5 Unit goods conveying systems
- 11 Dimensioning forcedependent take-up systems
- 12 Bulk goods conveying systems
- 15 Calculation example for unit goods conveying

INTRODUCTION

This brochure contains advanced equations, figures and recommendations, based on ISO 5048 standard and our longstanding experience. Results calculated can however differ from actual values on site by a slight margin due to unknown factors such as corrosion rates, lubrication, etc.

In the majority of cases, the safety margin in calculations in this brochure will be greater than in the corresponding real world practice.

TERMINOLOGY

Key to the abbreviations

Designation	Abbreviation	Unit
Drum and roller width	b	mm
Belt width	bo	mm
Calculation factors	С.,	_
Drum and roller diameter	d	mm
Drive drum diameter	d _A	mm
Rolling resistance of support rollers	f	_
Tensile force	F	N
Maximum belt pull (on the drive drum)	F ₁	N
Minimum belt pull (on the drive drum)	F ₂	N
Force of the tensioning weight	F _R	N
Effective pull	Fu	N
Tensioning drum weight	F _{TR}	N
Steady state shaft load on the drive drum	F _{WA}	N
Initial value of the shaft load	Fwinitial	N
Relaxed shaft load on the return drum	F _{WU}	N
Acceleration due to gravity (9.81m/s2)	g	m/s²
Difference in the drum radii (crowning)	h	mm
Conveying height	ht	m
Relaxed belt pull at 1% elongation per unit of width	k _{1%}	N/mm
Support roller pitch on upper side	lo	mm
Transition length	ls	mm
Support roller pitch on return side	lu	mm
Geometrical belt length	La	mm
Length of conveyor	I _T	m
Mass of the goods conveyed over the entire length conveyed (total load)	m	kg
Mass of the goods conveyed on the top side (total load)	m ₁	kg
Mass of the goods conveyed on the return side (total load)	m_2	kg
Mass of the belt	m _B	kg
Mass of the goods conveyed per m length conveyed on the upper face (line load)	m' _o	kg/m
Mass of all rotating drums, except for drive drum	m _R	kg
Mass of the goods conveyed per m length conveyed on the return side (line load)	m'u	kg/m
Mechanical motor power	P _M	kW
Mechanical power calculated on the drive drum	PA	kW
Production tolerance	Tol	%
Friction coefficient when running over roller	μ _R	_
Friction coefficient for accumulated conveying	μ _{st}	-
Friction coefficient when running over table support	μτ	-
Belt velocity	V	m/s
Volume flow for bulk goods conveying	V	m³/h
Total take-up range	X	mm
Belt sag		mm
Drum deflection	Ув	
	Утг	mm
Margin for take-up range	Z	۳M
Machine's angle of inclination	a	
Arc of contact on the drive drum (or snub roller)	β	o
Opening angle on the tensioning drum	γ	O
Belt elongation (pre-tensioning with weight)	ΔL	mm
Permitted angle of inclination for unit goods	δ	o
Elongation at fitting	٤	%
Maximum belt elongation	٤ _{max}	%
Drive efficiency	η	-
Bulk density of goods conveyed	ρς	kg/m ³

$m = I_T \cdot W eight of conveyed goods per metre F_U = \mu_R \cdot g \cdot (m + m_B + m_R)$	[N]		Load examples to establish the maximum effective pull F _u [N]
$F_U = \mu_T \cdot g \cdot (m + \frac{m_B}{2}) + \mu_R \cdot g \left(\frac{m_B}{2} + m_R\right)$	[N]		
$F_U = \mu_T \cdot g \cdot (m_1 + m_2 + m_B)$	[N]		
Direction conveyed upwards: $F_{U} = \mu_{R} \cdot g (m + m_{B} + m_{R}) + g \cdot m \cdot sin \alpha$ Direction conveyed downwards: $F_{U} = \mu_{R} \cdot g (m + m_{B} + m_{R}) - g \cdot m \cdot sin \alpha$	[N] [N]		
Direction conveyed upwards: $F_{U} = \mu_{T} \cdot g \left(m + \frac{m_{B}}{2}\right) + \mu_{R} \cdot g \left(\frac{m_{B}}{2} + m_{R}\right) + g \cdot m \cdot \sin \alpha$ Direction conveyed downwards: $F_{U} = \mu_{T} \cdot g \left(m + \frac{m_{B}}{2}\right) + \mu_{R} \cdot g \left(\frac{m_{B}}{2} + m_{R}\right) - g \cdot m \cdot \sin \alpha$	[N] [N]		
$F_{U} = \mu_{T} \cdot g \left(m + \frac{m_{B}}{2}\right) + \mu_{R} \cdot g \left(\frac{m_{B}}{2} + m_{R}\right) + \mu_{ST} \cdot g \cdot m$	[N]	+ · · · · · · · · · · · · · · · · · · ·	
F _u = please enquire	[N]		
F _u = please enquire	[N]	$\underbrace{\begin{array}{c} \bullet & \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet & \bullet & \bullet \\ \bullet & \bullet &$	

Friction coefficients µ_S for various coatings (guidelines)

Factor C₁

(applies to the drive drums)

	0, A0, E0, T, U0, P	NOVO	U1, V1, VH	UH, V2H, U2H, V5H, V10H	TXO (Amp Miser)
μ _T (table)	0.33	0.33	0.5	0.5	0.18
μ_{T} (galvanised slider beds)	-	-	-	-	0.24
μ _R (roller)	0.033	0.033	0.033	0.033	-
µ _{st} (accumulated)	0.33	0.33	0.5	0.5	-

Please note: The friction coefficients stated are based on experience with older friction surfaces that have been subjected to standard wear and tear and soiling. These friction coefficients are about 1.5 times higher than those for new surfaces.

Maximum belt pull F₁ $F_1 = F_U \cdot C_1$ [N] $F_1 = \frac{P_M \cdot \eta \cdot C_1 \cdot 1000}{V}$ [N]

If effective pull F_U can be calculated

If the effective pull F_U cannot be calculated, F_1 can be established from the motor power installed $P_M.$

Siegling Transilon Underside coating	V3, V5, U2, A5, E3			V1, U1, U	JH, U2H, V	2H, V5H	
Arc of contact β	180°	210°	240°	180°	210°	240°	
Smooth steel drum							
dry	1.5	1.4	1.3	1.8	1.6	1.5	
wet	3.7	3.2	2.9	5.0	4.0	3.0	
Lagged drum							
dry	1.4	1.3	1.2	1.6	1.5	1.4	
wet	1.8	1.6	1.5	3.7	3.2	2.9	

Siegling Transilon Underside coating	0, U0, I	0, U0, NOVO, E0, A0, T, P X0 (Amp Miser)		er)		
Arc of contact β	180°	210°	240°	180°	210°	240°
Smooth steel drum						
dry	2.1	1.9	1.7	3.3	2.9	2.6
wet	not	recommen	ded	not recommended		
Lagged drum						
dry	1.5	1.4	1.3	2.0	1.8	1.7
wet	2.1	1.9	1.7	not recommended		

Minimum diameter of the drive drums d_A

[mm]

Factor C₂ Checking the Transilon type selected

In the case of perforated belts please note: calculate the load-bearing belt width b_0 based on the number of perforations which decrease cross sections. Staggered perforations in particular can reduce the load-bearing belt width considerably. Reduce the figure for the load-bearing belt width b_0 by a further 20% to take tolerances for perforations and fabric into account.

if the value $\frac{F_1}{b_0}$ is larger than C₂,

a stronger belt type (with a higher $k_{1\%}$ value) must be used.

C₂ is a metric indicating the belt type's maximum tension:

$C_2 = \epsilon_{max} \cdot k_{1\%}$

the product data sheets include specifications on the ε_{max} maximum elongations during operation. If example calculations and rough estimates without a data sheet are required, the following assumption can be made (but not guaranteed):

Tension member Type	Standard polyester fabric ("E")	High-tech polyester fabric ("E …/H")	Aramid ("AE")	Elastic fabric types (EL) EL 0/V
Examples of type classes	E 2/1, E3/1, E 4/2, E 6/1, NOVO, E 8/2, E 10/M, E 12/2, E15/2, E 15/M, E 18/3, E 20/M, E 30/3, E 44/3	E 8/H, E 18/H	AE 18/H, AE 48/H, AE 80/3, AE 100/3, AE 140/H, AE 140/3	EL 0/V
ϵ_{max} in %	1.5	1.2	1.0	8

If subjected to high temperatures of over 100 °C, the C₂ factors change. Please contact us.

Siegling Transilon Underside coating	V3, V5, U2, A5, E3	V1, U1, UH	0, U0, NOVO, T, P
Smooth steel drum			
dry	25	30	40
wet	50	not recommended	not recommended
Lagged drum			
dry	25	25	30
wet	30	40	40

Mechanical capacity calculated on the drive drum P_A

(applies to the drive drums)

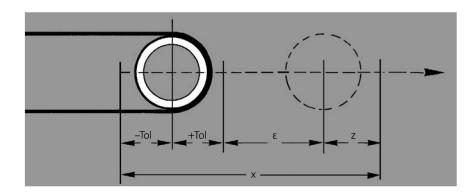
Factor C₃

[kW]

Mechanical capacity required P_M

 $P_{M} = \frac{P_{A}}{n}$ [kW] = the next largest, standard motor is selected

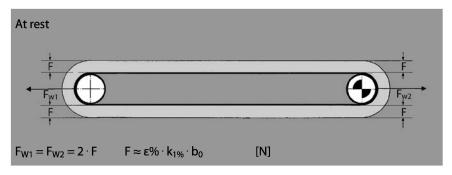
Elongation at fitting limits


The table on establishing the C_2 factor shows product examples for the tension member concerned.

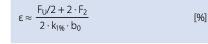
Tension member	Standard polyester fabric ("E")	High-tech polyester fabric ("E …/H")	Aramid ("AE")	Elastic fabric types ("EL")
min. elongation at fitting [%]	0.3	0.2	0.15	1.5
max. elongation at fitting [%]	1.0	0.8	0.8	5.0

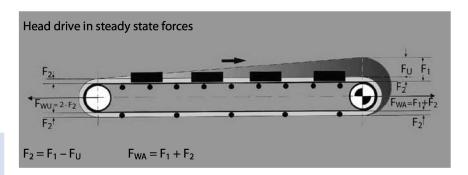
Take-up range for screw-operated take-up systems

The following factors must be taken into account when establishing the take-up range:


- 1. The approximate magnitude of elongation at fitting ε of the belt, resulting from the belt load. To establish ε , see pages 7 and 8.
- 2. The production tolerances (Tol) of the belt as regards the length.

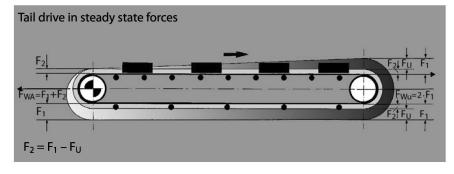
3. Any external influences that might necessitate greater elongation (tensioning) than usual, or might require a safety margin, such as for example the impact of temperature, stop-and-go operation. Generally, depending on the load, elongation at fitting, ranging from approx. 0.2% to 1%, is sufficient, so that normally a take-up range x of approx. 1% of the belt length is adequate.


Guidelines for shaft load at rest with tensile force F

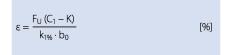

When you are estimating the shaft loads, please assess the different levels of belt pull when the conveyor is at rest and in a steady state.

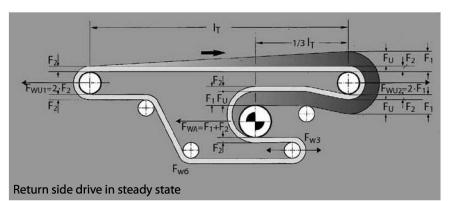
Guidelines for elongation at fitting ε for head drives

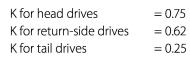
The minimum elongation at fitting for head drives is:

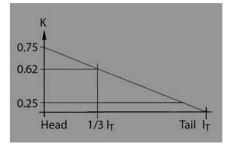


Guidelines for elongation at fitting ϵ for tail drives


The minimum elongation at fitting for return side drives is:


$$\epsilon = \frac{F_{U}/2 + 2 \cdot F_{2} + F_{U}}{2 \cdot k_{1\%} \cdot b_{0}}$$
 [%




Guidelines for elongation at fitting ε for return-side drives

The minimum elongation at fitting for operating head drives is:

Guidelines for steady state shaft load

Typical drive drum $\beta = 180^{\circ}$		Typical e
$F_{WA} = F_1 + F_2$	[N]	$F_{W3} = 2 \cdot F$
Typical snub roller $\beta = 60^{\circ}$		Typical d
$F_{W6} = 2 \cdot F_2 \cdot sin \ (\beta/2)$	[N]	$F_{WA} = \sqrt{F}$

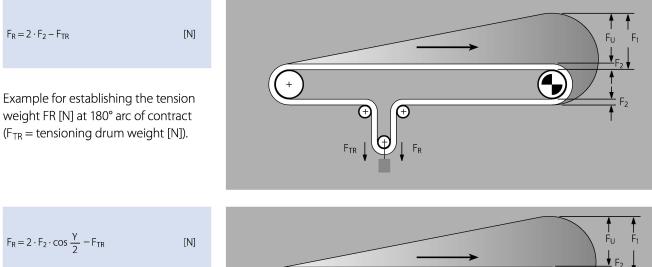
Typical end drum $\beta = 180^{\circ}$	
$F_{W3} = 2 \cdot F_2$	[N]
Typical drive drum $\beta \neq 180^{\circ}$	
$F_{WA} = \sqrt{F_1^2 + F_2^2 - 2 \cdot F_1 \cdot F_2 \cdot \cos \beta}$	[N]

Shaft load when tensioning belts

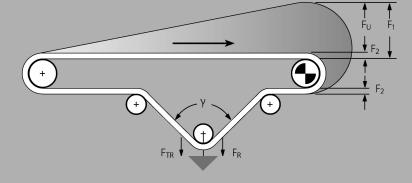
Tension members made of synthetic materials display significant relaxation behaviour. As a result, the relaxed $k_{1\%}$ value is taken as a basis for calculating belts in line with ISO 21181. It describes the probable long-term force-elongation properties of the belt material that has been subjected to stress due to deflection and load change. This produces the calculation force F_W .

This implies that higher belt forces $F_{Winitial}$ will occur when tensioning the belt. They will have to be taken into account when dimensioning the drum and its components (bearings). The following value can be assumed as a reference:

$F_{Winitial} = F_W \cdot 1.5$


In critical cases, we recommend you contact application engineers at Forbo Siegling.

DIMENSIONING FORCE-DEPENDENT TAKE-UP SYSTEMS


Establishing F_R

In weight-loaded take-up systems, the tension weight must generate the minimum belt pull F_2 to achieve perfect grip of the belt on the drive drum (spring, pneumatic and hydraulic take-up systems work on a similar principle).

The tension weight must be able to move freely. The take-up system must be installed behind the drive section. Reverse operation is not possible. The take-up range depends on the effective pull, the tensile force F_2 required, elongation of the belt ΔL , the production tolerance Tol, the safety margin for tensioning Z and the belt selected.

Example for establishing the tension weight F_R [N] at an angle γ according to the drawing (F_{TR} = tensioning drum weight [N]).

Establishing belt elongation ΔL

In force-driven take-up systems, the overall elongation of the belt changes, according to the level of the effective pull. The change in belt elongation ΔL has to be absorbed by the take-up system. For head drives ΔL is calculated as

 $\Delta L = \frac{F_U/4 + F_{TR} + F_R}{k_{1\%} \cdot b_0} \cdot L_g$

[mm]

BULK GOODS CONVEYING SYSTEMS

Longitudinal angle of inclination δ

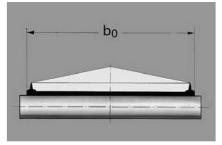
Guidelines for the longitudinal angle of inclination δ permissible in various bulk goods. The machinery's actual angle of inclination α must be less than δ .

These values depend on the particle shape, size and mechanical properties of the goods conveyed, regardless of any conveyor belt coating.

Bulk goods	δ (approx.°)
Ash, dry	16
Ash, wet	18
Soil, moist	18 – 20
Grain, except oats	14
Lime, lumps	15
Potatoes	12
Gypsum, pulverised	23
Gypsum, broken	18
Wood, chips	22 – 24
Artificial fertilizer	12 – 15

Bulk goods	δ (approx.°)
Flour	15 – 18
Salt, fine	15 – 18
Salt, rock	18 – 20
Loam, wet	18 – 20
Sand, dry, wet	16 – 22
Peat	16
Sugar, refined	20
Sugar, raw	15
Cement	15 – 20

Bulk density of some bulk goods ρ_{S}

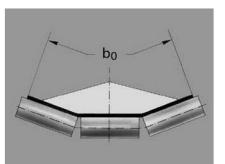

Goods conveyed Bulk den	isity ρS [10 ³ kg/m ³]
Ash, cold, dry	0.7
Soil, moist	1.5 – 1.9
Grain (except oats)	0.7 – 0.85
Wood, hard	0.6 – 1.2
Wood, soft	0.4 – 0.6
Wood, chips	0.35
Charcoal	0.2
Pulses	0.85
Lime, lumps	1.0 – 1.4
Artificial fertilizer	0.9 – 1.2
Potatoes	0.75
Salt, fine	1.2 – 1.3
Salt, rock	2.1
Gypsum, pulverised	0.95 – 1.0

Bulk density ρS [10 ³ kg/m ³]				
	1.35			
	0.5 – 0.6			
	1.2 – 1.5			
	1.5 – 1.6			
	1.8 – 2.0			
	1.3 –1.4			
	1.4 – 1.9			
	0.15 – 0.35			
	1.0			
	0.4 – 0.6			
	0.8 – 0.9			
	0.9 – 1.1			
	0.2 - 0.3			
	Bulk densi			

Volume flow V for belts lying flat

The table shows the hourly volume flow (m^3/h) at a belt velocity of v =1 m/s. Conveyor belt lying flat and horizontal. The belt is equipped with 20 mm high longitudinal profiles T20 on the belt edges of the top face.

b ₀ [mm]	400	500	650	800	1000	1200	1400
Angle of surcharge 0°	25	32	42	52	66	80	94
Angle of surcharge 10°	40	57	88	123	181	248	326


Volume flow V for troughed conveyor belts

in m³/h at a belt velocity of 1 m/s.

Note:

Under real world conditions, the theoretical values for volume flow are hardly ever reached as they only apply to horizontal belts with perfectly even loads. Uneven loads and the properties of the goods conveyed can decrease the amount by approx. 30%.

b ₀ [mm]	400	500	650	800	1000	1200	1400
Troughed angle 20°							
Angle of surcharge 0°	21	36	67	105	173	253	355
Angle of surcharge 10°	36	60	110	172	281	412	572
Troughed angle 30°							
Angle of surcharge 0°	30	51	95	149	246	360	504
Angle of surcharge 10°	44	74	135	211	345	505	703

Factor C₆

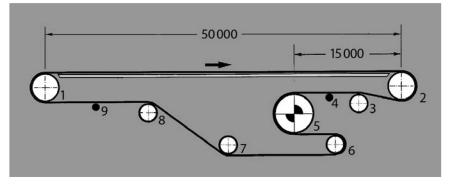
In inclined conveying, the theoretical quantity of goods conveyed is slightly less. It is calculated by applying the factor C_6 which depends on the conveying angle α .

Conveying angle ɑ [°]	2	4	6	8	10	12	14	16	18	20	22
Factor C ₆	1.0	0.99	0.98	0.97	0.95	0.93	0.91	0.89	0.85	0.81	0.76

l _T [m]	25	50	75	100	150	200
Factor C ₄	2	1.9	1.8	1.7	1.5	1.3

Factor C₄

Additional effective pull, for example from scrapers and cleaning devices, is taken into account by including the factor C_4 .


BULK GOODS CONVEYING SYSTEMS

Rolling resistance for support rollers f	f = 0.025 for roller bearings $f = 0.050$ for slide bearings	
Establishing the mass of goods conveyed m	$m = \frac{V \cdot \delta_{S} \cdot I_{T} \cdot 3.6}{v}$	[kg]
Establishing the effective pull F _U (-) downwards	$F_U = g \cdot C_4 \cdot f (m + m_B + m_R) \pm g \cdot m \cdot sin \ a$ Calculation as for unit goods	[N]
(+) upwards Support roller pitches	The support roller pitch depends on the belt pull and the masses. The fol-	If maximum sag of 1 % is permitted, (i.e. $y_B = 0.01 I_0$)
	lowing equation is used to calculate it:	Recommendation $I_0 \max \le 2b_0$ $I_u \approx 2 - 3 I_0 \max$
	$I_0 = \sqrt{\frac{y_B \cdot 800 \cdot F}{m'_0 + m'_B}} \qquad [mm]$	$I_0 = \frac{8 \cdot F}{m'_0 + m'_B} $ [mm]
	l_0 = Support roller pitch on upp y_B = Maximum conveyor belt sat F = Belt pull in the place concert rat(4) and $rat(4)$	g in mm

 $m'_0 + m'_B =$ Weight of goods conveyed and belt in kg/m

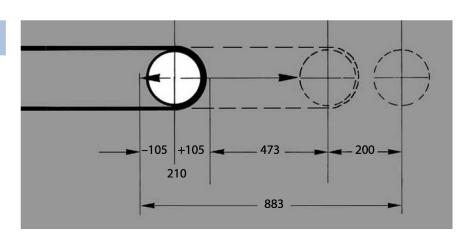
CALCULATION EXAMPLE FOR UNIT GOODS CONVEYING

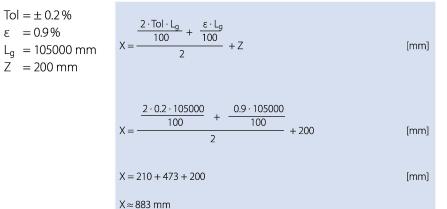
In a goods sorting system, conveyor belts are loaded with goods and sent to the distribution centre. Horizontal conveying, skid plate support, return drive systems as shown on the sketch, drive via the top face of the belt, drive drum with lagging, screw-operated tensioning system, 14 support rollers. Proposed belt type: Siegling Transilon E 8/2 0/V5H S/MT black (996141) with k_{1%} = 8 N/mm.

End drums 1, 2, 6 Snub rollers 3, 7, 8 Drive drum 5 Support rollers 4, 9, and various tension drums 6. Length of conveyor Geometrical belt length Belt width Total load Arc of contact v = ca. 0.8 m/s Mass rollers $\begin{array}{rrrr} &= 50 \mbox{ m} \\ L_g &= 105000 \mbox{ mm} \\ b_0 &= 600 \mbox{ mm} \\ m &= 1200 \mbox{ kg} \\ \beta &= 180^{\circ} \\ g &= 9.81 \mbox{ m/s}^2 \\ m_R &= 570 \mbox{ kg} \\ (all \mbox{ drums except} \\ for 5) \end{array}$

Effective pull F _U [N]	$F_U = \mu_T \cdot g (m + \frac{m_B}{2}) + \mu_R \cdot g (\frac{m_B}{2} + m_R)$					
	F _U = 0.33 · 9.81 (1200 + $\frac{1575}{2}$) + 0.033 · 9.81 ($\frac{1575}{2}$ + 570) F _U ≈ 4340 N					
		m)				
Maximum belt pull F ₁ [N]	$F_U = 4350 \text{ N}$ $C_1 = 1.6$	$F_1 = F_U \cdot C_1$ $F_1 = 4350 . 1.6$ $F_1 \approx 6960 N$				
Checking the belt type selected	$F_1 = 6960 \text{ N}$ $b_0 = 600 \text{ mm}$	$\frac{F_1}{b_0} \le C_2$				
	k _{1%} = 8 N/mm	$\frac{6960}{600} \le 1.5 . 8 \text{ N/mm}$ 11.6 N/mm $\le 12 \text{ N/mm}$				

The belt type has been chosen correctly.


CALCULATION EXAMPLE FOR UNIT GOODS CONVEYING


Minimum drive drum diameter	$F_U = 4340 \text{ N}$ $C_3 = 25$ $\beta = 180^\circ$ $b_0 = 600 \text{ mm}$	$d_{A} = \frac{F_{U} \cdot C_{3} \cdot 180^{\circ}}{b_{0} \cdot \beta}$ $d_{A} = \frac{4340 \cdot 25 \cdot 180^{\circ}}{600 \cdot 180^{\circ}}$ $d_{A} = 181 \text{ mm}$ $d_{A} \text{ dimensioned at 200 mm}$	[mm] [mm]
Power P _A on the drive drum	$F_{U} = 4350 \text{ N}$ v = 0.8 m/s	$P_{A} = \frac{F_{U} \cdot v}{1000}$ $P_{A} = \frac{4350 \cdot 0.8}{1000}$ $P_{A} \approx 3.5 \text{ kW}$	[kW]
Motor power required P _M	$P_A = 3.5 \text{ kW}$ $\eta = 0.8 \text{ (assumed)}$	$P_{M} = \frac{P_{A}}{\eta}$ $P_{M} = \frac{3.5}{0.8}$ $P_{M} \approx 4.4 \text{ kW}$ $P_{M} \text{ at 5.5 kW or higher}$	[KW]
Minimum elongation at fitting for return drive	$\begin{array}{l} F_{U} &= 4350 \ \text{N} \\ C_{1} &= 1.6 \\ \text{K} &= 0.62 \\ k_{1\%} &= 8 \ \text{N/mm for} \\ & \text{E} \ 8/2 \ \text{O/V5H S/MT black} \\ b_{0} &= 600 \ \text{mm} \end{array}$	$\epsilon = \frac{F_{U} (C_{1} - K)}{k_{1\%} \cdot b_{0}}$ $\epsilon = \frac{4350 (1.6 - 0.62)}{8 \cdot 600}$ $\epsilon \approx 0.9 \%$	[%]

Shaft load in steady state drum drum 2 (return drum)	Simplified calculation assuming $\beta = 180^{\circ}$ F ₁ = 6960 N	$F_{W2} = 2 \cdot F_1$ $F_{W2} = 2 \cdot 6960 \text{ N}$ $F_{W2} \approx 13920 \text{ N}$
Shaft load in steady state drum drum 1 (return drum)	$F_2 = F_1 - F_U$ $F_2 = 6960 - 4350$ $F_2 = 2610 \text{ N}$	$F_{W1} = 2 \cdot F_2$ $F_{W1} = 2 \cdot 2610 \text{ N}$ $F_{W1} \approx 5220 \text{ N}$
Shaft load in steady state drum drum 5 (Drive drum)	$F_1 = 6960 \text{ N}$ $F_2 = F_1 - F_U$ $F_2 = 6960 - 4350$ $F_2 = 2610 \text{ N}$	$F_{WS} = F_1 + F_2$ $F_{WS} = 6960 + 2610$ $F_{WS} \approx 9570 \text{ N}$
Shaft load in steady drum 3 (snub roller)	Governed by minimum belt pull F_2 , F_{W3} is calculated using the equation on page 10	L
Shaft load at rest To compare rest and steady state modes, please observe the different shaft loads in drum 1.	At rest, tensile forces are defined on the top and underside by elongation at fitting ε. The tensile force F is calculat- ed according to:	$F = \epsilon [\%] \cdot k_{1\%} \cdot b_0 \qquad [N]$
$\begin{array}{ll} F_{W1} \mbox{ at rest } &= 8640 \mbox{ N} \\ F_{W1} \mbox{ steady state } &= 5220 \mbox{ N} \\ \end{array}$ Note: When designing machinery, both modes must be taken into account.	Example for a drum with $\beta = 180^{\circ}$ Arc of contact (In our example, this force is exerted equally on drums 1, 5 and 6 because of the 180° arc of contact).	$F_W = 2 \cdot F$ $F_W = 2 \cdot 0.9 \cdot 8 \cdot 600$ $F_W \approx 8640 \text{ N}$
	When $\beta \neq 180^{\circ}$ the following applies when determining F_W ($F_1 = F_2$ can be assumed at rest).	$F_{W} = \sqrt{F_{1}^{2} + F_{2}^{2} - 2 \cdot F_{1} \cdot F_{2} \cdot \cos \beta}$ $F_{W} = [N]$

CALCULATION EXAMPLE FOR UNIT GOODS CONVEYING

Take-up range

Institute of Construction Materials

Committed staff, quality oriented organization and production processes ensure the constantly high standards of our products and services.

ICONSMAT complies with total quality management principles. Our quality management system has ISO 9001 certification at all production and fabrication sites. What's more, many sites have ISO 14001 environmental management certification.

The Institute brings together academic and industry professionals across the wide spectrum of construction material industry globally. Our commitment to quality and durability is reflected in daily processes.

Institute of Construction Materials Liverpool, NSW, 2170, Australia E: career@iconsmat.com.au www.iconsmat.com.au

Bringing science and industry together